Variable Selection of Heterogeneous Spatial Autoregressive Models via Double-Penalized Likelihood
نویسندگان
چکیده
Heteroscedasticity is often encountered in spatial-data analysis, so a new class of heterogeneous spatial autoregressive models introduced this paper, where the variance parameters are allowed to depend on some explanatory variables. Here, we interested problem parameter estimation and variable selection for both mean models. Then, unified procedure via double-penalized quasi-maximum likelihood proposed, simultaneously select important Under certain regular conditions, consistency oracle property resulting estimators established. Finally, simulation studies real data analysis Boston housing carried illustrate developed methodology.
منابع مشابه
Variable Selection via Penalized Likelihood
Variable selection is vital to statistical data analyses. Many of procedures in use are ad hoc stepwise selection procedures, which are computationally expensive and ignore stochastic errors in the variable selection process of previous steps. An automatic and simultaneous variable selection procedure can be obtained by using a penalized likelihood method. In traditional linear models, the best...
متن کاملVariable Selection for Linear Transformation Models via Penalized Marginal Likelihood
We study the problem of variable selection for linear transformation models, a class of general semiparametric models for censored survival data. The penalized marginal likelihood methods with shrinkage-type penalties are proposed to automate variable selection in linear transformation models; we consider the LASSO penalty and propose a new penalty called the adaptive-LASSO (ALASSO). Unlike the...
متن کاملVariable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملVariable Selection for Joint Mean and Covariance Models via Penalized Likelihood
In this paper, we propose a penalized maximum likelihood method for variable selection in joint mean and covariance models for longitudinal data. Under certain regularity conditions, we establish the consistency and asymptotic normality of the penalized maximum likelihood estimators of parameters in the models. We further show that the proposed estimation method can correctly identify the true ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2022
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym14061200